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Abstract— The optimal estimator problem is considered for
stochastic systems with polynomial linear drift terms with
polynomial observations and intensity parameters multiplying
diffusion terms in the state and observation equations. The
estimator equations are obtained using a value function as
solution to the corresponding nonlinear parabolic equation
PDE. The performance of the obtained risk-sensitive estimator
stochastic systems with polynomial linear drift terms with
polynomial observations is verified in a numerical example,
through comparing the mean-square criteria values for the
optimal risk-sensitive estimator and polynomial filtering
equations. The simulation results reveal strong advantages in
favor of the designed risk-sensitive equations in regard to the
final criteria values for some values of the parameter ϵ.

Keywords: error, criterion, filter desing, filtering problems,
estimators.

I. INTRODUCTION

In (Basin, 2003), (Basin and Martı́nez, 2004), (Basin,
Perez and Calderón, 2008) and (Basin and Darı́o, 2009),
has continued the investigation of optimal filtering for poly-
nomial systems. The cubic sensor problem ((Hazewinkel,
Marcus and Sussmann, 1983)) is one of the applications
you have in solving the problem of optimal filtering for
polynomial observations, where there is a great advantage
in theory and practice of filtering.

More than thirty years ago, Mortensen (Mortensen, 1968)
introduced a deterministic filter model which provides an
alternative to stochastic filtering theory. In this model,
errors in the state dynamics and the observations are
modeled as deterministic ”disturbance functions”, and an
exponential mean-square cost criterion disturbance error
is to be minimized. Special conditions are given for the
existence, continuity and boundedness of f(x(t)) in the
state equation, which is considered nonlinear, and the linear
function h(x(t)) in the observation equation. A concept
of the stochastic risk-sensitive estimator, introduced more
recently by McEneaney (McEneaney, 1998), regard a dy-
namic system where f(x) is a nonlinear function and
linear observations and existence of parameter ϵ̃ multiplying
diffusion term in both equations (state and observations). In
(M. V. Basin and Darı́o Calderón Álvarez, 2009) obtained
the equations of optimal filtration for polynomial systems
over polynomial observations. The goal of this work is
to obtain the optimal filter risk-sensitive equations when
the form of f(x(t)) is polynomial of first degree and the

observation equations are polynomial of second degree,
the parameter ϵ̃ multiplies the diffusion term in the state
and observations equations. This filtering equations are
obtained taking a value function as solution of the parabolic
partial differential equation and mean-square exponential
criterion to be minimized. These equations are compared
with Polynomial filter equations in an example, for certain
values of the parameter ϵ, and the same exponential mean-
square cost criterion values. It was proved, the performance
of the risk-sensitive Optimal Estimator equations versus
Polynomial filtering equations for systems of first degree
with observation of second degree. This performance is
shown verified in a numerical example against the mean-
square optimal for Polynomial filter, through comparing the
exponential mean-square criterion values. The simulation
results reveal strong advantages in favor of the designed
risk-sensitive equations for some values of the intensity
parameters multiplying diffusion terms in state and observa-
tion equations. Tables of the criteria values and simulation
graphs are included. This work is organized as follows: The
filtering problem statement is presented in Section II. In
Section III is presented the solution to optimal risk-sensitive
estimator problem for polynomial systems over polynomial
observations. An numerical example is solved for the risk-
sensitive optimal filter algorithms and Polynomial Filter in
Section IV. In Section V are the conclusions.

II. FILTERING PROBLEM STATEMENT

Consider the following stochastic model (1), where X(t)
denotes the state process. Y (t) denotes a continuous accu-
mulated observations process. X(t) satisfies the diffusion
model given by:

dX(t) = f(X(t))dt+

√
ϵ

2γ2
dW (t) (1)

where f(x(t)) represents the nominal dynamics, and W is a
Brownian motion, and the observation process Y (t) satisfies
the equation:

dY (t) = h(X(t))dt+

√
ϵ

2γ2
dW̃ (t), Y0 = 0, (2)

where h(X(t)) is a polynomial vectorial function, ϵ is
a parameter and W and W̃ are independent Brownian
motions, which are also independent of the initial state X0.
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X0 has probability density kϵexp(−ϵ−1ϕ(x0)) for some
constant kϵ.

Let us consider

J = ϵlogE exp
1

ϵ

∫ T

0

L(x(t),m(t), t)dt (3)

the quadratic cost criterion to be minimize.
In the rest of the paper the assumptions (A1)-(A4) (from

(Fleming and McEneaney, 2001)) are hold:
(A1)f, g, h ∈ Rn with fx, hx bounded.
(A2) D1(/x/

2 − 1) ≤ ϕ(x) ≤ D2(/x/
2 + 1).

Here fx is the matrix of partial derivatives of f with hx

defined similarly. ϕ is a continuous, real-valued function
satisfying (A2) for some positive D1, D2.

(A3) f, h ∈ Rn with f, h, bounded and fxx, hxx

bounded and globally Hölder continuous. (A function
u is globally Hölder continuous if there exists α ∈
(0, 1],K < ∞ such that |u(x) − u(y)| ≤ K|x − y|α
for all x, y.)
(A4) Given R < ∞, there exists KR < ∞ such that
|ϕ(x)− ϕ(y)| ≤ KR|x− y| for all |x|, |y| < ∞.

Let q(T, x) denote the unnormalized conditional density
of X(T ), given accumulated observations Y (t) for 0 ≤
t ≤ T. It satisfies the Zakai stochastic PDE, in a sense
made precise, for instance in (Lukes, 1969), sec. 7. Since
the normalizing constant kϵ above is unimportant for q, it
is assumed that

q(0, x) = exp(−ϵ−1ϕ(x)) (4)
q(T, x) = p(T, x)exp[ϵ−1Y (T ) · h(x)]

where p(T, x) is called pathwise unnormalized filter density.
Then p satisfies the following linear second-order parabolic
PDE with coefficients depending on Y (T ).

∂p

∂T
= (Ľ(T ))∗p+

K

ϵ
p,

Where, for every g ∈ Rn, let

Lg =
ϵ

2
tr(agxx) + f · gx, (5)

Ľ(T )g = Lg − a(Y (T ) · h)x · gx,

K(T, x) =
1

2
a(x)(Y (T ) · h)x · (Y (T ) · h)x

−L(Y (T ) · h)− 1

2
|h|2.

L denote the differential generator of the Markov diffusion
X(t) in (1). By assumptions (A1) and (A3) in (W. H.
Fleming and W. M. McEneaney, 2001), K is bounded and
continuous. (Ľ(T ))∗ is the formal adjoint of Ľ(T ). Since
Y0 = 0, p(0, x) = q(0, x). The initial condition for (5) is
(4). For some given Y. ∈ C0(0, T ] (where C0 denote the
space of continuous Y such that Y0 = 0, with the sup
norm ∥ ∥). The pathwise filter density p is the unique
”strong”solution to (5) and (4) in a sense made precise
in (D. L. Lukes, 1969), Sec. 7. Moreover, if we denote
dependence on Y. by writing p(T, x;Y ), then p(T, x; ·), is

continuous in the sup norm. Further, p is a classical solution
to (5) and (4), with p continuous on [0, T1]×Rn and partial
derivatives pT , pxi , pxixj , i, j = 1, ..., n continuous
for 0 < T ≤ T1 (( Yoshida and Loparo, 1989) Chap. 1,
and (Ladyz̆enskaja , Solonnikov, Ural’ceva, 1968) Chap.
4). Moreover, p(T, x;Y.) > 0. We rewrite (5) as follows:

∂p

∂T
=

1

2
tr(a(x)pxx) +A · px +

B

ϵ
p, (6)

where

A = −f(x) + a(x)(Y (T ) · h(x))x + (7)
ϵdivax(x)

B(T, x) =
ϵ2

2
traxx(x)− ϵdiv[f(x)− a(x)(Y (T ) ·

h(x))x] +K(T, x)

(divax)j = Σn
i,j=1(aij)xi

, j = 1, ..., n,

traxx = Σn
i,j=1(aij)xixj .

These assumptions imply uniform bounds for A and B,
depending on the sup norm ∥Y.∥ on [0, T1], but not on
ϵ. Taking log transform: Z(T, x) = ϵlogp(T, x), which
satisfies the nonlinear parabolic PDE

∂Z

∂T
=

ϵ

2
tr(Zxx) +A · Zx +

1

2
Zx · Zx +B, (8)

with initial condition Zx(0, x) = −ϕ(x). The risk-sensitive
optimal filter problem consists in found the estimate C(T ),
of the state x(t) through verification that

Z(T, x) =
1

2
(x− C(T ))TQ(T )(x− C(T )) + (9)

ρ(T )− Y (T ) · h(x(t))

is a viscosity solution of (12). The notation for all the
variables is x(t) = x(t), x(t) ∈ Rn, w(t) ∈
Rm, y(t), v(t) ∈ Rp, f, h ∈ Rn with fx, hx

bounded is assumed throughout. Here hx is the matrix of
partial derivatives of h and the same form for Zx.

III. RISK-SENSITIVE OPTIMAL ESTIMATOR

Taking f(X(t)) = A(t)+A1(t)X(t), h(X(t)) = E(t)+
E1(t)X(t)+...+En(t)X(t)XT (t)X(t)XT (t)...X(t), with
A(t) ∈ Rn, A1(t),∈ Mn×n, E(t) ∈ Rp, E1(t) ∈
Mn×p, ..., En(t) ∈ Tn×n×n×n...(nveces)×n where Mi×j

denotes the field of matrices of dimension i × j and
Tn×n...(nveces)×n denotes the field of tensors of dimension
i× j × k. The following stochastic equations system:

dX(t) = A(t) +A1(t)X(t) +
√
ϵ̃dB(t),

dY (t) = E(t) + E1(t)X(t) + ...+ En(t)·
X(t)nveces...X(t) +

√
ϵ̃dB̃(t),

where ϵ̃ = ϵ
2γ2 .

The filtering problem is to obtain the optimal estimator
of the state X(t) given the observations, which minimizes
the function exponential cost criterion mean square.
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Theorem The solution to the filtering problem, for the
system (10) with criterion

J = ϵlogE{exp 1

ϵ

∫ T

0

(X(t)−m(t))(X(t)− (10)

m(t))T /Y (t)}

takes the form:

Ċ(t) = −Q−1[Q̇(t)C(t) + Ẏ (t)E1(t)−A(t)Q(t) (11)

+A1(t)Q(t)C(t) +
1

2
C(t)Q(t)−Q(t)Y (T ) ·

E1(t)− 2C(t)Q(t)Y (T )E2(t)−
1

2
E1(t)]

Q̇(t) = 2[(Ẏ (t))(E2(t) + E3(t)X(t) + ...+ En(t) ·
Xn−2(t))−A1(t)Q(t)− (Y T (T )E1(t)Y (T )

−C(t)Q(t)Y (T ))(3E3(t) + 4E4(t)X(t)

+...+ nEn(t)X
n−3(t))− (Y T (t)E2(t) ·

Y (T ) + Y (T )ET
2 (t)Y

T (t) +Q(t)Y (T ))(2

E2(t) + 3E3(t) + ...+ nEn(t)X
n−2(t))−

(3Y T (t)E3(t)Y (T ) + ...+ nY T (t)En(t) ·
Y (T )Xn−3(t))(E1(t) + 2E2(t) + ...+

nEn(t)X
n−1(t)) +

1

2
Q(t)− 1

2
(

n∑
i=1

(E2
i (t) ·

X2i(t)) + 2
n∑

i=0

Ei(t)(
n∑

j=2

(Ej(t)X(t)j)))]

Where C(t) is the vector of estimation of the state with the
initial conditions C(0) = C0 and Q(t) is a negative definite
symmetric matrix, where the initial condition Q(0) = q0
is derived of the initial conditions for Z. If ϕ(X(t)) =
X(t)TKX(t), Q(0) = −K.

Proof: The value function is proposed:

Z(t,X(t)) = 1
2 (X(t)− C(t))TQ(t)(X(t)− C(t))+

ρ(T )− Y (T ) · h(X(t)),

ZX(0, X(t)) = −ϕ(X(t)), ( C(t), Q(t), ρ(t) are
functions defined in [0, T ], C(t) ∈ Rn, Q(t) is a
symmetric matrix of dimension n × n and ρ(t) is a scalar
function) as a viscous solution of the equation nonlinear
parabolic PDE:

∂Z

∂T
=

ϵ

2
tr(Zxx) +A · Zx +

1

2
Zx · Zx +B, (12)

ZX , ZXX are the partial derivatives of Z respect to X(t),
and ∇Z is the gradient of Z. The partial derivatives of Z

are given by:

ZT =
1

2
(X(t)− C(t))T Q̇(X(t)− C(t))− (13)

(X(t)− C(t))TQĊ + ρ̇(t)− Ẏ h(X(t),

ZX =
1

2
Q(t)(X(t)− C(t)) +

1

2
(X(t)

−C(t))TQ(t)− Y (T )(E1(t) + 2E2(t)X(t)

+...+ nEn(t)X
n−1(t))

ZXX = Q(t)− Y (T )(2E2(t) + 6E3(t)X +

...+ n(n− 1)En(t)X
n−2(t)).

Let consider:
A = −A(t)−A1(t)X(t) + Y (T )(E1(t) + 2E2(t)X(t)

+...+ nEn(t)X
n−1(t)),

B = −ϵA1(t) +
1
2 (Y (T )(E1(t) + 2E2(t)X(t) + ...

+nEn(t)X
n−1(t)))2 − (A(t) +A1(t)X(t))·

[Y (t)((E1(t) + 2E2(t)X(t) + ...+ ·
nEn(t)X

n−1(t)))]− 1
2 (E(t) + E1(t)X(t) + ...

+En(t)X(t)XT (t)X(t)XT (t)...X(t))

Substituting (13) and the expressions for A,B in (12), we
obtain:

0 = −1
2 (X(t)− C(t))T Q̇(X(t)− C(t)) + (X(t)−

C(t))TQĊ − ρ̇+ Ẏ (E(t) + E1(t)X(t) + ...
+En(t)X(t)XT (t)X(t)XT (t)...X(t)) + ϵ

2 tr(Q(t))
+(−A(t)−A1(t)X(t) + Y (T )(E1(t) + 2E2(t)·
X(t) + ...+ nEn(t)X

n−1(t)))(12Q(t)(X(t)− C(t))
+ 1

2 (X(t)− C(t))TQ(t)− (−A(t)−A1(t)X(t)+
Y (T )(E1(t) + 2E2(t)X(t) + ...+ nEn(t)X

n−1(t)))
+ 1

2 (
1
2Q(t)(X(t)− C(t)) + 1

2 (X(t)− C(t))TQ(t)−
Y (T )(E1(t) + 2E2(t)X(t) + ...+ n · En(t)X

n−1(t))·
( 12Q(t)(X(t)− C(t)) + 1

2 (X(t)− C(t))TQ(t)−
Y (T )(E1(t) + 2E2(t)X(t) + ...+ nEn(t)X

n−1(t)))−
ϵA1(t) +

1
2 (Y (T )(E1(t) + 2E2(t)X(t) + ...+ nEn(t)

Xn−1(t)))2 − (A0(t) +A1(t)X(t))[Y (T )·
(E1(t) + 2E2(t)X(t) + ...+ nEn(t)X

n−1(t))]
− 1

2 |E(t) + E1(t)X(t) + ...+ En(t)X(t)...X(t)|2.
Collecting the terms containing the factor
XT (t)X(t), XT (t)X(t)XT (t) and XT (t)X(t)...
and substituting X(t) for C(t), we obtain the matrix
equation for Q̇(t). Collecting the terms containing factor
X(t), the vector equations for Ċ(t) are obtained (11). ⋄

IV. APPLICATION PLANE IN FLIGHT HORIZONTAL

IV-A. Risk-sensitive Optimal Estimator for Polynomial
Systems over Polynomial Observations

Consider the differential equations describing the trajec-
tory of a plane that flies describing a circle of radius R at
a certain height above sea level in a two-dimensional plane
parallel to the plane tangent to the Earth. The plan is to co-
ordinate functions x1 and x2, which describe the position of
the plane at all times. The control parameter is the function
u, which represents the direction of the plane relative to the
fixed coordinates (x1, x2), which can be changed at will.
((Sira, Márquez, Rivas, Llanes-Santiago, 2005))
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The model system is given by:

Ẋ1(t) = V cosu+

√
ϵ

2γ2
dW1(t), (14)

Ẋ2(t) = V sinu+

√
ϵ

2γ2
dW2(t),

Ẏ (t) =
√
X2

1 +X2
2 −R2 +

√
ϵ

2γ2
dW3(t),

The output of the system represents the distance to an
imaginary circle, plotted on the horizontal plane, centered
at the origin and radius R.

Apply the Taylor series to give the form of polynomial
equations of state:

Ẋ1(t) = V +

√
ϵ

2γ2
dW1(t), (15)

Ẋ2(t) = V u+

√
ϵ

2γ2
dW2(t).

Considering Z = (Ẏ −
√

ϵ
2γ2 dW3(t))

2 +
√

ϵ
2γ2 dW3(t), as

the equation of the observation, we have:

Ż(t) = X2
1 +X2

2 −R2 +

√
ϵ

2γ2
dW3(t). (16)

We can see that the observation equation is of second
degree.

Applying the equations (15) and (16) to the system (11),
we obtain the equations for risk-sensitive optimal estimator
for polynomial observations:

Ċ1(t) = (Q11Q22 −Q12Q21)
−1[Q22(Q̇11C1 + Q̇12C2

−Q11V + 1
2Q11C1 +

1
2Q12C2 − 2YT ·

Q11C1 − 2YTQ12C2)−Q12(Q̇21C1 + Q̇22C2

−Q21V + 1
2Q21C1 +

1
2Q22C2 − 2YT ·

Q21C1 − 2YTQ22C2)],

Ċ2(t) = (Q11Q22 −Q12Q21)
−1[−Q21(Q̇11C1 + Q̇12C2

−Q11V + 1
2Q11C1 +

1
2Q12C2 − 2YT ·

Q11C1 − 2YTQ12C2) +Q11(Q̇21C1 + Q̇22C2

−Q21V + 1
2Q21C1 +

1
2Q22C2 − 2YT ·

Q21C1 − 2YTQ22C2)],

Q̇11 = 2Ẏ − 8Y 2
T − 8Q11YT − 1

2 (R
4 + C4

1 + C2
1C

2
2−

2R2C2
1 + 2C2

1 ),

Q̇12 = −8Q12YT − 1
2 (C

3
1C2 + C1C

3
2 ),

Q̇21 = −8Q21YT − 1
2 (C

3
1C2 + C1C

3
2 ),

Q̇22 = 2Ẏ − 8Y 2
T − 8Q22YT − 1

2 (R
4 + C4

2 + C3
1C2−

2R2C2
2 + 2C2

2 ).

The initial conditions for the risk-sensitive filter are:
X1(0) = 0,31, X2(0) = 0,05, Y1(0) = 0,85, C1(0) =
−1,9 y C2(0) = 1,415. The initial conditions for the Q′s
equations are given in the Table I.

The system formed by equations (15), (16) and (17), is
simulated using Simulink MatLab7. The design of the equa-
tions is compared against Polynomial Filtering equations
(M. V. Basin and Darı́o Calderón Álvarez, 2009), applied
to the system (15) and (16).

TABLA I
INITIAL CONDITIONS FOR THE EQUATIONS FOR R-S ESTIMATOR AND

THE POLYNOMIAL FILTERING

R-S Estimator Polinomial Filtering
Q11(0) = −80 P11(0) = 25 V = 1
Q12(0) = −0,26 P12(0) = 1 = P21 R = 0,001
Q22(0) = −60 P22(0) = 20 T = 0,5s

TABLA II
COMPARISON OF MEAN-SQUARE EXPONENTIAL CRITERION J (10)

FOR R-S FILTER AND POLYNOMIAL FILTER.

ϵ JR−S JPol

0,001 0,7051 T = 0,3898 0,7048 T = 0,09
0,01 0,8022 1,5112
0,1 0,8025 1,5049
1 0,8034 1,4694
10 0,8063 4,15
100 0,8159 49,7508
1000 0,8496 2907,427

IV-B. Optimal Estimator for Polynomial States over Poly-
nomial Observations

The equations of the Optimal Estimator for polynomial
states over polynomial observations are given ((M. V. Basin
and Darı́o Calderón Álvarez, 2009)) by:

ṁ1 = (1− 2m1)
−1[

√
ϵ

2γ2 + P11(dy1 −m1)+

P12(dy2 −m2)],

ṁ2 = (1− 2m2)
−1[

√
ϵ

2γ2 + P21(dy1 −m1)+

P22(dy2 −m2)],

Ṗ11 = (2V + 2ṁ1)
2P11 +

ϵ
2γ2 − P 2

11 − P12P21,

Ṗ12 = (2V + 2ṁ1)(2V + 2ṁ2)P12 − P11P12 − P12P22,

Ṗ21 = (2V + 2ṁ2)(2V + 2ṁ1)P21 − P11P21 − P21P22,

Ṗ22 = (2V + 2ṁ2)
2P22 +

ϵ
2γ2 − P 2

22 − P21P12.

Where the initial conditions are: X1(0) = 0,31, X2(0) =
0,05, Y1(0) = 0,85, m1(0) = −2,85 y m2(0) = −0,15.
The initial conditions for P ′s are given in the Table I.

The systems of equations are simulated with the initial
conditions of Table I.

Then we can see that the difference in the values of the
criteria is large, since for the risk-sensitive estimator was
smaller.

Table II presents some values of the risk-sensitive and
Polynomial mean-square exponential criterion values, it can
be observed that the Jr−s values are the smallest values.

The graphics 1 and 2 show the Error1, which is defined
as E1 = X1(t) − C1(s); the Error2 is defined as E2 =
X2(t)− C2(s), and the mean-square exponential criterion.

V. CONCLUSIONS

In this work we obtained the equations of the problems of
optimal risk-sensitive estimator and the optimal filtering for
polynomial systems over polynomial observations, when the
system is a polynomial of degree one and the observations
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Figura 1. Error 1, Error 2 and R-S Criterion.
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Figura 2. Error 1, Error 2 and Polynomial Criterion.

are second grade, with presence of white Gaussian noise,
the exponential cost criterion mean- square was minimized,
with the parameter ϵ̃ multiplying the Gaussian white noise,
and taking into account a value function as a viscous
solution of partial differential equation (HJB).

A numerical application was determined for both cases
(risk-sensitive filtering and filtering polynomial) for some
values of the parameter ϵ̃. The advantage of the equations
of optimal risk-sensitive estimator is verified through the
values of exponential cost criterion of mean square J with
respect to the polynomial filter. The graphics show the
difference between the state and the estimator obtained, also
the graph of the exponential mean-square criterion.
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